Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites.

نویسندگان

  • L Latriano
  • B D Goldstein
  • G Witz
چکیده

It has been proposed that a ring-opened form may be responsible for the toxicity of benzene. The present studies demonstrate that incubation of [14C]benzene with liver microsomes (obtained from male CD-1 mice treated with benzene) in the presence of NADPH results in the formation of a ring-opened product. Evidence for the identity of this product was obtained by derivatizing with 2-thiobarbituric acid (TBA), which resulted in the formation of an adduct with a 490-nm absorbance maximum. This maximum is identical to that observed after authentic trans,trans-muconaldehyde has reacted with TBA. Separation of muconaldehyde, both with and without trapping with TBA, from other benzene metabolites in the incubation mixture was accomplished by HPLC. The radioactivity profile of fractions collected during HPLC analysis contained peaks that eluted with muconaldehyde and the muconaldehyde-TBA adduct. The structure of the ring-opened product was confirmed by mass spectrometry, studies in which the HPLC peak from the microsomal incubation mixture that eluted at the retention time of authentic muconaldehyde was collected and derivatized with 2,4-dinitrophenylhydrazine. The high-resolution mass spectrum of this sample contained an ion with an m/z of 291.0729, corresponding to muconaldehyde mono-dinitrophenylhydrazone. These results indicate that benzene is metabolized in vitro to a ring-opened product identified as muconaldehyde.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive ring-opened aldehyde metabolites in benzene hematotoxicity.

The hematotoxicity of benzene is mediated by reactive benzene metabolites and possibly by other intermediates including reactive oxygen species. We previously hypothesized that ring-opened metabolites may significantly contribute to benzene hematotoxicity. Consistent with this hypothesis, our studies initially demonstrated that benzene is metabolized in vitro to trans-trans-muconaldehyde (MUC),...

متن کامل

The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites.

Studies were completed in F344/N rats and B6C3F1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The sat...

متن کامل

Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs.

Tolterodine is a new muscarinic receptor antagonist intended for the treatment of urinary urge incontinence and other symptoms associated with an overactive bladder. The in vivo metabolism of 14C-labeled tolterodine was investigated in rats, mice, and dogs by analysis of blood and urine samples, whereas in vitro metabolism studies were performed by incubation of [14C]tolterodine with mouse, rat...

متن کامل

Chromatographic and spectrophotometric characterization of adducts formed during the reaction of trans,trans-muconaldehyde with 14C-deoxyguanosine 5'-phosphate.

Mice liver microsomes oxidatively open the benzene ring to form trans,trans-muconaldehyde, a hematotoxic unsaturated aldehyde. In the present studies, 4.5 mumole trans,trans-muconaldehyde was reacted with 14C-2'deoxyguanosine 5'-phosphate in phosphate buffer. Products were separated by high performance liquid chromatography (HPLC). Absorbance was monitored using a diode array detector, and aliq...

متن کامل

Metabolism and toxicity of trans,trans-muconaldehyde, an open-ring microsomal metabolite of benzene.

We have previously hypothesized that ring-opened metabolites may play an important role in benzene toxicity. In this paper we review recent work related to this hypothesis. trans,trans-Muconaldehyde (TTM), a six-carbon diene dialdehyde, was shown by our laboratory to be a microsomal metabolite of benzene. This compound is a ring-opened metabolite of benzene that is hematotoxic in mice. The toxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 21  شماره 

صفحات  -

تاریخ انتشار 1986